

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Com-Power Corporation 19121 El Toro Road Silverado, CA 92676

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President Expiry Date: 04 August 2026 Certificate Number: AC-2894

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Com-Power Corporation

19121 El Toro Road Silverado, CA 92676 Shirish Shah 949-459-9600

CALIBRATION

Valid to: August 4, 2026

Certificate Number: AC-2894

Electrical – RF/Microwave

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
ISN ¹ Impedance Phase Voltage Division Factor Isolation (Decoupling Factor) Longitudinal Conversion Loss	150 kHz to 230 MHz (0.1 to 210) Ω (0 to 360) ° (-15 to 0) dB (-80 to 0) dB (-85 to -35) dB	1.8 % of reading 1.2 ° 0.27 dB 2.4 dB 0.7 dB	CISPR 22, CISPR 32, CISPR 16-1-2, Agilent 4395A Network Spectrum Impedance Analyzer w/87511A S-Parameter Test Set, Cal Kit
LISN ¹ Impedance Phase Insertion Loss Isolation (Decoupling Factor)	9 kHz to 400 MHz (0.1 to 210) Ω (0 to 360) ° (-10 to 0) dB (-80 to 0) dB	1.8 % of reading 1.2 ° 0.27 dB 2.4 dB	CISPR 22, CISPR 32, CISPR 16-1-2, ANSI C63.4, Mil-Std-461, RTCA DO-160, Agilent 4395A Network Spectrum Impedance Analyzer w/87511A S-Parameter Test Set, Cal Kit
Current Probes & BCI Probes ¹ Insertion Loss (Transfer Impedance)	9 kHz to 400 MHz (-70 to 0) dB 400 MHz to 1 GHz (-70 to 0) dB	0.28 dB 0.79 dB	CISPR 16-1-2, Mil-Std- 461, RTCA DO-160, Agilent 4395A Network Spectrum Impedance Analyzer w/87511A S- Parameter Test Set, Agilent 8722ES S-Parameter Vector Network Analyzer

www.anab.org

Electrical – RF/Microwave

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
CDN & 50Ω-150Ω Adapters ¹ Impedance Phase Voltage Division Factor Isolation (Decoupling Factor) Adapter Insertion Loss	150 kHz to 230 MHz (0.1 to 210) Ω (0 to 360) ° (-20 to 0) dB (-80 to 0) dB (-11 to -8) dB	1.8 % of reading 1.2 ° 0.27 dB 2.4 dB 0.15 dB	CISPR 16-1-2, IEC/EN 61000-4-6, Agilent 4395A Network Spectrum Impedance Analyzer w/87511A S-Parameter Test Set, Cal Kit
RF Preamplifiers, Amplifiers ¹ Gain	100 Hz to 500 MHz (0 to 60) dB 50 MHz to 40 GHz (0 to 60) dB	0.27 dB 0.47 dB	Agilent 4395A Network Spectrum Impedance Analyzer, 87511A S- Parameter Test Set, Agilent 8722ES S-Parameter Vector Network Analyzer

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-2894.

Jason Stine, Vice President

www.anab.org